SOME ASPECTS OF ROBUSTNESS

Donald E. MYERS*

CONTENTS

A HSRRAG s e s s o S R o i (o VEl S e PR i e S e T
RS NP O CRTON sttt s = e i sie s 65 B = CTRCUIAR:, PATTERNS: & ot nin - 78
BE U ROBUSTNESS s ieiois asisian D S R 66 S SRR o - e o o e e s 78
C - NUMERICAL EXAMPLES ..veeecueenn 70 H - ACKNOWLEDGEMENT wuvovcuconn. O
D - SAMPLING CONFIGURATIONS «eu.... 71

E - ROBUST OR NON-ROBUST +vavenueun- 72 RE B RN IS s st A i g e 79

ILLUSTRATIONS

I 1L TR (2] L g o s sy S N B L LY e W S B S e 5 LA s s S 73
Fignipe 2= < o ie Tuss . e R FERE NIl S e R R e e o R WS e ht S L T S 73

*Department of Mathematics - University of Arizona - TUCSON, AZ 85721 - USA.

"ETUDES GEOSTATISTIQUES", Séminaire CFSG - 17-18 Juin 1985 - Fontainebleau, France, in Sci. de la Terre, Sér. IR en %24

63




ABSTRACT

There are several parameters in a kriging system : the variogram, the sampling
configuration, the size and shape of the block and its relationship to the sample pattern, etc.
The robustness of kriging with respect to these parameters is considered. Armstrong and Diamond
have considered a particular form of neighborhood for variograms. Other definitions are conside-
red as well as the distinction between the weights vector with and without the Lagrange multi-
plier. The problem is most easily seen in the context of continuity. Numerical examples are

given.

RESUME

Quelques aspects de la Robustesse

Un systeme de krigeage fait intervenir plusieurs parametres : le variogramme, 1l'im-
plantation spatiale des sondages, la taille et la géométrie du bloc a estimer ainsi que sa
position par rapbort au plan d'échantillonnage, etc. Dans cet article, la robustesse d'un systéme
de krigeage est étudiée par rapport a ces paramétres. Armstrong et Diamond l'ont utilisé dans le
cas d'une forme de voisinage d'estimation particulier. D'autres types de voisinage d'estimation,
de plan d'échantillonnage et formes de blocs sont étudiés ici, dans le cas de pondérateurs
tenant compte ou non des paramétres de Lagrange. Il est plus facile de poser ce probléeme dans le

cas continu. Des exemples numériques sont donnés a titre d'illustration.
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A - INTRODUCTION

Robustness is a desirable property of estimators which has multiple meanings. In the
context of classical statistics, it refers to the insensitivity of the estimator to changes in
the distribution of the population sampled and/or to the presence of outliers see Hampfel
(1971). Huber (1981) has discussed various modifications of estimators for the mean that make
the estimator more robust in the classical sense.

In the practice of geostatistics, estimation is a multiple stage process and if the
estimation is non-robust or instable at any one step the cumulative process may be constable.
Consider the standard problem of utilizing data in 1, 2 or 3-space to estimate spatial averages
over intervals, areas or volumes. Whether Simple, Ordinary, Universal, Disjunctive Indicator
Kriging or Co-Kriging is used, one must first estimate or model the variogram (respectively
generalized covariance). It is “"well-known" that Kriging is relatively robust with respect to
the variogram model. It is also well-known that the standard estimator for the variogram ig not
robust. Armstrong and Delfiner (1980) utilized quartile estimatos to minimize the effect of
outliers. Cressie and Hawkins (1980) have shown that under normality assumptions that other
estimators are more robust. However there is a distinction between estimating the values of the
variogram at each of a finite number of lags and modelling the variogram which must satisfy
positive definiteness conditions. BLUEPACK (1983) incorporates an algorithm for estimating the
coefficients in a polynomial generalized covariance. Kitanidis (1983) has proposed a maximum
likelihood estimator for these coefficients.

Whichever variogram or generalized covariance estimator is used, it is common practice to
use cross-validation to verify the appropriateness of the model selected. The efficacy of cross-—
validation in turn is dependent on the robustness of Kriging. Unfortunately cross-validation
does not result in a single characteristic to be maximized or minimized. Even if it did, there
would remain the question of whether cross-validation is sufficiently sharp to distinguish
between variogram models that are close. lawkins and Cressie (1984) have proposed an iterative
process as has Neumann (1984). Armstrong (1984), Diamond and Armstrong (1984) have examined the

more fundamental question of the robustness of Kriging. One may examine the Kriging estimator
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in at least two ways (1) the set of weights (2) the estimated value. Since the weights vector is
itself data free it would seem preferable to consider only the weights but ultimately it is the
estimated value that is of interest. In either case it is possible to view robustness in the
sense of continuity.

If X 1is the solution vector of a Kriging system for the variogram model <y and AX {is
the incremental change in X resulting from the change Ay then Diamond and Armstrong (1984)
(hereafter referred to as D/A) have obtained bounds for (AXI and 1AXI/1Xt for a particular
choice of a neighborhod of <y and for certain matrix norms. This work extends that of D/A in
several respects. The solution considered by D/A includes the Lagrange multiplier(s) whereas the
estimated values do not directly depend on the multiplier(s). The neighborhood definition
utilized by D/A is non-symmetric and is too restrictive, their definition can be extended and
other neighborhood definitions will be considered. The question of robustness will first be

placed in a more general context.

B — ROBUSTNESS

In examining the Kriging equation for the block estimator, there are at least four

"parameters” that determine the Kriging weights.

1 - THEORETICAL

a. the variogram or generalized covariance model

b. the geometrical configuration and the number of sample locations used in the
estimation

C. the block shape and the geometrical relationship of the block to the sample location
configuration

d. the order of the drift (and the choice of drift functions)

While not present in the Kriging equations in the same sense as the theoretical parameters

the solution vector is also affected by at least two computational "parameters”.
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2 — COMPUTATIONAL

a. the mesh and pattern of the grid of points in the block used to numerically integrate
i
b. the method used to solve the system of equations, e.g. Gaussian Reduction, Pivoting,

partitioning etc.

Finally there is the question of the support of the data, because the Kriging equations
utilize point support values, 1i.e. the weights are associated with point values, that is, there
is the question of what changes should be made in the weight vector to reflect non—-punctual
support.

Let ESERRETE denote the sample locations and Z(xl),...,Z(xn) the (punctual) data. Let

y(h) denote the variogram model (or generalized covariance) then the Kriging equations may be

written in the form

PSS TR (1)

F A =F (725)

where

o { . o Y(Xi'Xj) (3)

Y
g o
R S TR SR L T S
Yn
_ IeEes Mo
A N P (5)
_xn Yy
-
P |1 (6)
1

With respect to the effects of the four theoretical parameters, changes in T, T A,

FO could be written in the form
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[ A S 5

FO - FO + AFO
For each of these components of the Kriging equations, the change may include the effective
deletion of a row and/or column, i.e. the replacement by a row/column of zeros. For example,
if Z{(x) is an Intrinsic Random Function order zero then F would consist of 1's in column one
and zeros in the remaining columns whereas for an order one IRF in three space there would be
three more non—zero columns. In a similar fashion if moving neighborhoods are used, T would
have one or more rows and columns with all zeros.

If ) 1is written in the form

KGR TR,E ) (3)

Oy

then

AX = G(I+aT, THAT s FHAF, F +AF )

9)
_G(F’FO’F’FO)
For a data vector 7 = [Z(xl),...,Z(xn)]
ZX(xy) =Z X 10
and
AZ*(x4) = 7 Ax (11)
Note that in the case.of AF = 0, 7 AX is an authorized linear combination, that is, FTAA =10

This suggests a possible test statistic for comparing one variogram model against another.

Since Z AA 1is an authorized linear combination, the variance of

Zax  is AATFAA or AAT(F+AF)AA. If Al is small in an appropriate sense then the quotient of

L

these two variances should be close to one.
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The distinction betweer X and A is diminished when considering the Kriging variance and

we shall limit consideration to some numerical examples.

3 - NEIGHBORHOODS FOR VARIOGRAMS

Let A be the family of valid variograms in Rk.

Definition 1. (D/A) TFor vy e A and 0 < § <1

B 1' < 5} (12)

s o < su
A*CS(Y) i {;,‘gEA, lhT Y(h)

Diamond and Armstrong have shown that this is a very useful neighborhood definition and by
using the condition number of the variogram matrix obtain bounds for 1AXI, I1AXKI/IXI where

1t e
S [ ST R

Several comments are in order

It is not necessary to assume that vy, g are isotropic

The definition is not quite symmetric in vy, g, g € Nﬁ(y) implies vy e NG,(g) where

§' = §/(1+6)

The definition requires that g, y coincide for h = 0 and that the values be close for
large 'h’. For spherical models this means the nuggets must be the same and the sills the
same or very close

Since moving or local neighborhoods are commonly used the definition can be weakened by

using

g(h)
o) 1’ < 8} (13)

LA {g|gea, TET<Y

This would permit a linear model to be in a neighborhood of a Spherical whereas the original

definition would not.
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Definition 2 Let yYeA and ¢ > O.

ME,Y(Y) = {g|gea, T§f<r v(h) - g(h)| < e} (14)

Yakowitz and Szidarovsky (1984) have given a bound on (AXl using this neighborhood

definition. Moreover it would seem a more natural definition except that in general it is the

values of the variogram for short lags that are most critical.

C - NUMERICAL EXAMPLES

D/A have given several examples wherein a 1 x 1 block is to be estimated using the sample

locations at (-0.4,0), (0.4,0) and (0.39,0.1)

1=y, g ARE CAUSSIAN

A
Points Y g
(-0.4, 0) .4982 .4985
(0.4, 0) .3970 4112
€0<39, 0.1) .1048 .0903
in -.0190 -.0140
Table 1
I1AXH A
—— = ,0324, —/— = . 4
I X1l 26 Al i

where X 1is the solution of BX = BO as given in D/A. X the solution of the system (1), (2).

The bound given in D/A for IAXI/IXI 1is
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1AXN 28X (B)
XIS 1=8A(B) (E5)

but 8 = .1 and hence k(B) = 100 and the bound is not applicable.

2-y, g ARE GAUSSIAN

Y, a =1, sill = 1, nugget = 0

g, a =1, sill = .99, nugget = .l
A
points Y g
(0.4, 0) 4982 4954
(0.4, 0) .3970 .3253
(0.39, 0.1) .1048 .1793
u -.0190 -.0230
Table 2
1AXI LAAR
" .1602, e .1602

D — SAMPLING CONFIGURATIONS

One may consider moving the block to be estimated. The latter is computationally simpler

and is used in the following examples

1-y IS GAUSSIAN
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A
N R GTT T b S R R =
0,0) 498 -108 393 —7019 017
€ ) .595 .688 -.283 -.028 | .0205
il 403 - 530 1.147 -.032 | .0232
ok L) 612 g .862 -.032 | .0247
Gt i) .384 776 S TR -.027 | .0178

Table 3

Note that only small pertubations of the block result in sign reversals in the weights.

4 vy IS GAUSSIAN,

X
oF S |
Block Center| (.4,0) g9 a0y Yok i 2
(0,0) 499 .094 408 —.014 L0128
Cite 33 .598 .728 ~.326 =.022 0149
Bt i) BT S S 1T 1.212 -.026 .0169
Cik= k) PO R .906 ~.026 .0185
=1 ;il) .381 i .808 -.189 -.022 0115

Table 4

The Gaussian model is particularly sensitive to small changes in the variogram as well as in

the sample configuration.

E — ROBUST OR NON-ROBUST

When collecting soil samples for monitoring for the presence of pollutants, it has often
been the practice of the EPA (Environmental Protection Agency, USA) to sample each block to be
estimated by using locations regularly spaced on the circumference of circle centered in the

block. For simplicity consider a 1 x 1 block with a circle of radius r centered in the
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Table 5 - Kriging Variances

Spherical model, sill = 1.5
8 x 8 grid for numerical integration
4 sample points on circle, radius r, center at center of block

radius variogram block size
r range 1.0 x 1.0 1.0 x 1.2

0.0 .10 1520 L.522 1523
.20 1.468 i {11 1.473
.30 1.408 1.418 1.427
40 1.324 1.343 1.358
.50 122 1.241 1.265
.60 1.067 I L 1.148
.80 (039745 0.842 0.888

0.1 0.10 0.389 0.390 0.390
0.20 0.429 0.432 0.436
0.30 0::597 0.607 0.615
0.40 0.685 0.703 09718
0.50 0.690 0.718 0.742
0.60 0.638 0.676 QL0
@70 0.561 0.604 0.646
0.80 % 0.485 ! G528 0.571

|
|

052 0.10 0382 0.384 0.338
0©..206 0.341 0.344 0.348
0.30 0.286 0.296 0.305
0.40 0.287 0.304 0.319
0.50 0302 0.326 0.347
0.60 0.301 0.350 0.358
0.70 0.281 0.312 0.344
0.80 0.251 0.283 0.316

0.3 0.10 0.382 0.389 0.394
0.20 0.340 0.344 0.348
0.30 0.284 0293 0.303
0.40 0.217 0229 0.240
C.50 0.165 0.170 D191
0.60 0.138 0.154 0.171
0.70 0.124 0.140 0.1:59
0.80 0.116 0.133 0.151
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Table 6 — Kriging Variances

Spherical model, sill = 1.5
8 x 8 grid for numerical integration
8 sample points on circle, radius r, center at center of block

radius variogram block size
r range 1.0 x 1.0 1.0 x 1.1 I
(43 .10 02715 0.214 0.215
<20 0.367 0.370 0.374
.30 05557 0.567 0.574
.40 0.655 0.673 0.687
.50 0.665 0.693 0.717
0.2 0.10 0.199 0.202 0.204
0.20 0.182 0.186 0.189
0.30 0.210 0.220 0.229
0.40 0.229 0.247 0.262
0.50 0.254 0.278 0.300
0.3 0.10 0.191 0.191 0.195
0.20 0.152 0.155 0.159
0.30 0.124 0.132 0.141
0.40 0.109 0.128 0.135
0.50 0.079 0.103 0.119
0.4 0.10 0.197 0.204 0.203
0.20 0.154 0.158 0.161
0.30 0.108 0.113 0.119
0.40 0.086 0.090 0.096
0.50 0.079 0.080 0.084
0.5 0.10 0.204 0.197 0.199
0.20 0.172 0.168 0.168
0.30 0.146 0.139 0.138
0.40 0.124 0.112 0.107
0.50 0.124 0.109 0.100
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Table 7 - Kriging Variances
Spherical model, sill = 1.5 5
4 x 4 grid for numerical integration
5 sample points on circle, radius r, center at center of block

radius variogram block size

e range 1.0 x 1.0 1.0 x 1.1 L.07x 1.2

0 .2 1.579 1.588 1.593

.3 1.443 1.458 1.478

4 1.364 12375 1.387

o5 1.246 1.279 1.384

.6 1.090 1.114 1.178

o7 0.935 0.985 1.034

.8 0.801 0.850 0.399

.1 .2 0.453 0.451 0.476

.3 0.610 0.622 0.636

4 0.696 0.715 0.731

.5 0.703 0.734 0.758

.6 0.641 0.683 0.723

o7 0.561 0.607 0.651

.8 0.480 0.525 0.570

o2 o2 0.303 0.298 0.294

o3 0.268 0.275 0.280

¥ 0.278 0.294 0.306

5 0.287 0.313 0.334

.6 0.289 0.317 0.344

7 0.270 0.301 0.331

.8 0.238 0.270 0.303

23 2 0.336 0.346 0.349

o 0.240 0.253 0.265

N 0.168 0.185 0.195

5] 0.145 0.161 0.178

.6 0.116 0.133 0.153

T 0.110 0.126 0.144

.8 0.103 0.121 0.140

4 2 0.284 0.298 0.317

3 0.228 0.238 0.253

N 0.175 0.181 0.192

E) 0.125 0.125 0.137

«6 0.102 0.104 0.112

i 0.087 0.089 0.095

.8 0.073 0.073 0.078
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Table 8 ~ Kriging Variances

Spherical wodel, sill = 1.5
8 x & grid for numerical integration
5 sample points on circle, radius r, center at center of block

radius variogram block size

I range 1.0 x 1.0 Laltage 10 1.2 x 1.0

Sl 1.520 1.523 1.523

-2 1.478 1.471 1.473

At sl 0.301 0.300 0:.299

0.398 0.401 0.404

37 il 0.297 0.300 0.305

2 0.262 0.266 0.271

) 0.244 0.254 0.263

4 0.257 0.274 0.289

) 0.275 0.300 0.323

.6 0.280 0.309 0.337

2. 0.264 0.296 0.324

.8 0.235 0.269 0.302

B ek 0.305 0.304 0.300

2 0.265 0.268 0.270

- 0.207 0.216 04223

o4 0.147 0.160 0.172

50 0.125 0.139 0.154

.6 0.104 0.114 0.135

ol 0.097 0.113 0.131

.8 0.093 0.110 0.128

A =l 0.313 0.315 0.316

' 2 0.267 0.270 0.273

D 0.221 0.225 0.232

4 0.172 0.174 0.180

) 0.121 0.122 0.127

.6 0.100 0.099 0.103

ol 0.086 0.085 0.088

.8 0.069 0.068 0.071

.5 £ 0.309 0.313 0.310

o2 0.283 0.282 0.281

.3 0.262 0.254 0.252

4 0.238 0.227 0.220

-5 0.211 0.195 0.186

.h 0.176 0.159 0.148

.7 0.158 0.140 0.128

.8 0.149 0.131 0.118
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block, n points uniformly spaced on the circle and Yy a spherical model with no nugget, sill
1.5 and range a. It is easily seen that because of the symmetry all weights are 1/n and hence
as r, a change the weight vector changes not at all.

While the sampling pattern changes with r, it does so in an isotropic way. As the range
on the variogram changes, the weights do not. In contrast the Kriging variance does change.
Judged in this context, the Kriging estimator may be too robust or not robust at all since

clearly the estimated value changes unless the random function is a constant.

F — CIRCULAR PATTERNS

The following tables and figures illustrate the behavior of the Kriging variance when a
circular pattern is used. Note especially the behavior for r = 0, where the variance is
montone as contrasted with the case of r > 0. This suggests that the ability of cross-
validation to distinguish the "better” of several variogram models is effected by the local

neighborhood search process in Kriging.

G - SUMMARY

The robustness of the Kriging estimator and the Kriging variance as a function of the
variogram model, sampling pattern configuration, block size and shape, order of drift is not
uniform. For some variogram types and sampling configurations the estimator is very non-—
robust. The robustness of the estimator may be gauged either in terms of the weight vector or
the estimated value. The efficacy of cross-validation is dependent on the robustness and the

non-robustness of the Kriging estimator.
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